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Motion of an Artificial Earth Satellite
under the Influence of the Sun and Moon

A. V. Ecorova

URING the flight of artificial earth satellites outside the

terrestrial atmosphere the principal disturbances are

caused by the nonsphericity of the earth and the attraction of
the sun and moon.

The effect of the nonsphericity of the earth on the motion
of an artificial earth satellite has been studied sufficiently well.
In the present work the disturbing effect of the sun and moon
is examined. These bodies are considered to be physical
points moving in elliptical orbits.

Lagrange’s equations for the osculating elliptic elements of
a satellite orbit have the following form (1) :
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Here f is the constant of gravitation, a the semimajor axis,
e the eccentricity, ¢ the inclination of the orbit, w the longi-
tude of the perigee, Q the longitude of the ascending node of
the orbit, M the mean anomaly of the satellite orbit, m, the mass
of the earth, and W the disturbing function which is defined
by the formula

W = fmy <_L o coszh) + s <}_ _ rcosupS)

AL rr? As TS2

where mr, and mgs are the masses corresponding to the moon
and the sun, z1, ¥z, 21, Ts, ¥s, 2s are the coordinates of the
moon and the sun in a coordinate system with its origin at the
center of mass of the earth.

rt =z, 4 yﬂ + 2
A= (z —z)*+ (y — y)? + (2 — @)?
rr; cosy, = xx; + yys + 28

(here and in the future ¢ = L,S), z, y, and 2z are the satellite
coordinates expressed in terms of the elliptic elements (2):

z = a[P,-(cosE — ¢) + VI — ¢ Q, sinE]
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a[P,-(cosE — ¢) + V1 — ¢ Q, sinE] [2]
a[P, (cosE — ¢) + V1 — ¢ @, sinE]

r = a(l — e cosE)
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Translated from Iskusstvennye Sputniki Zemli (Artificial Earth
Satellites) (1961), no. 8, pp. 46-56. Translated by Ernst Volgenau,
Los Angeles, Calif.

! Numbers in parentheses indicate References at end of paper.

P., P, P, Q. @, and Q, are coeflicients depending upon w,
Q, ¢, and E is the eccentric anomaly.

Expanding the disturbing function according to Legendre’s
polynomials (3) we obtain

1 reosys 1 fr\* & [r\?
A, - et n( > kz=:2 <h) Py (cosy,)
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3 1\ 3 esd k~2
W = n? <£> 8;2 <&> 72 Z <T—> Py, (cosy)
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where ¢ is the polar radius of the earth and §; are infinites-
imally small parameters

sr = (LY
Mo \Q;

0z = 5.6-10~8 852 = 2.6-1078
We shall look for the solution of Eqgs. [1] in the form
G = G + 826" + 84265

where @ is any one of the osculating elements. Let us in-
troduce the infinitesimals 672 and 642, the product of which
is small enough to be neglected. That is, we shall study sepa-
rately the disturbing effect of the moon and sun on the
satellite.

The motion of a satellite is studied in the range

1.2¢ < r € 10¢ (3]

where the limits were taken such that the height of the perigee
is about 103 km over the surface of the earth, and the apogee is
approximately 50 to 100-10% km. The numerical estimates
are carried out for a height of 70-10% km.

In this range r/r. < %, r/rs £ 4.3:107%  Since the ratio
r/r; 18 small, in the sum Zg only one component is retained
with Py; and in the sum X the components with P, P, and
P, are retained. Only the constant part of the term in P, is
taken. This part gives the secular perturbations in the ele-
ments. The remainder terms have the form
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In Egs. [1], when we discard the series B;, we do not take
into account the components causing disturbances in the

- elements on the order of 1077,

In investigating the perturbations due to the moon, the
reference plane is taken as the plane of the orbit of the moon
so that zz = 0, wr, = 0 (the axis z is directed to the perigee).
Then cosyr = cosu cos(Q — vz) — sinu cosi sin(Q — vz), where
vy Is the true anomaly of the moon and v = » 4+ w is the argu-
ment of the latitude of the satellite. Since 7/ry is assumed
small

Wi = n¥a/c)?6:%(ar/rr)%? [(§ costyr — 3) +
(r/r)(§ cos®yr — 3 cosyr) +
(r/r0)? (3% cos%r — 32 costr + §) ] [4]
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In investigating the perturbations due to the sun, it is more
convenient to take the reference plane as the plane of the
ecliptic and to direct the = axis to the perigee of the orbit of
the sun, so that zg = 0 and ws = 0. Then cosys = cosu
cos(Q — vs) — sinu cost sin(Q — vs) where v is true anomaly
of the sun. The disturbing function expressing the action of
the sun on the satellite will have the following form:

Ws = n¥(a/c)%0s*(as/rs)r¥($ cos®Ps — %) [5]

For the integration of the equations of [1] it is convenient
to represent W, in the form of the function of the satellite
eccentric anomaly E. TUsing Eqgs. [2], we express cosy; in
terms of E:

cosy; = (a/r)[(cosE — e)(P, cosv;, + P, siny;) +
V1 — ¢ sinE-(Q, cosv; + Q, sinv;)]

Substituting cosy; into Eqs. [4] and [5] we obtain

2 3
Wi = n(a/c)?:? g—z (4 ,9cosjE + B, sinjE)

=0
where
A = (as/rs)?an + ajp cos2vs + ;s sin2pg]
(G=0,1,2)
B = (as/rs)3[bj 4 b cos2vg + B sin2ug)
(1=12)

A® = By® =0

A = (an/ri)*[(aw + (@¥/riH)ae'®) +
(02 + (a%/r1)an®) cos2vz +
(o + (a2/Tr2)ae'®) sin2vy +
(a2/r12) (00 cosdvr, + aq'® sindvr) +
(a/ri)(an cosvy + ag sinvy + ae cos3vr + aos sindvz)]

AJ-(L) = (azL/TL>3[(aj0 + a5z cos2vr + Qo Sin2VL) 4+
(a/rr){a;y cosvr + aj sinvg + aj cosdvr + oy sindvy)]

Bj(l‘) = ((J/L/TL>3[(Z)]‘0 + bjg cos2vr + 652 sin201,) +
(a/r)(b;; cosvr + B sinvr + by cosdvr + B3 sindvz)]

=123

The coeflicients a;;, bji, oz, B, depend on e, w, ¢, and Q in
the following manner:

apw = (2 4 €2 (—1 4 3 cos%) + § €? cos2w sin¥%

e = [3(2 + ¢?) sin% + $e? cos2w(l + cos?)] cos2Q —
2e? sin2w cost §in2Q

an = —3e(—1 + 3 cos¥) — $e cos2w sin%

ae = —3e[sin% + cos2w(l + cos)lcos2Q -
3e sin2w cost sin2Q

an = Le2(—1 4 3 cos?) + $(2 — €?) cos2w sin%

B
an = 3[e?sin% 4 (2 — ¢?) cos2w(l + cos%)] cos2Q —
2(2 — ¢?%) sin2w cost sin2Q

ap = 0z =0
b = 2eV'1 — ¢ sin2 sin%

by = %e\/l — ¢ sin2w(1 + cos%) cos2 +
3¢V'1 — e? cos2w cosi sin2Q

by = —2V1 — ¢ sin2w sin%
by = —%\/1 — e? sin2w(l -+ cos%) cos2Q —

%\/ 1 — e? cos2w cost sin2Q
b30 = b32 = 0

an = %e(2 + Jeh& — F3e’nsin %
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aos = —18e(2 + 26?0 sin% — $3eir

. = ”“'g(l + e E + 220 sin

ai = 15(1 4 te?)o-sin% + Fler

G = —5—2-6(2 + )& — £2e(2 — ey sin
Oz = —45e(2 4+ e?)osin% — $§e(2 — e¥)7
an = —5ett + 15(4 — eV sin

ayn = $3eto sin¥ + (4 — 3eY)r

by = —&V1 — e (4 + e2)(QE/ow) +
225001 — ¢ sin% 4(d,/0w)

bs = V1 — ¢ (4+¢?) sin(do/dw) +

2e2V1 — e? 1(07/0w)
bu = %5 V1 — 2E/0w) — £3eV1 — ¢ sin% 1 (d9/0w)

by = —L1feV1 — €?5in%(d0/dw) — 13eV1 — € 1(dr/dw)

Bl = — HeV1 — e2(0£/0w) + -
354 — V1 — e2sin% 1 (0n/0w)

by = 436*V1 — ¢2(d0/dw) sin% +
&4 — V1 — 2 2d7/w)

00® = 5%y (1 + 5e2 4 18 4)(3 — 30 cos? + 35 cos%) +
W % cosk) cos2w sin% +-

$812%¢0% cosdw sin¥y

ae® = |51 + 5e? 4 XEe)(—1 4 7 cos¥) sin +
105021 4 Le%) (1 — 6 cosZ + 7 cos*) cos2w +
223%¢* cosdw(l — cos%)] cos2Q +
[392e%(1 + 3¢%(5 — 7 cos%) sin 2w cosi —
220564 sindew sin% - cost] sin2Q
e = [FL5(1 + be? + APe* sin% + 12Ze2(1 + Le?) X
cos2w(l — cos’s) 4 22%3¢* cosdw(l +
6 cos% + cos“)] cos 402 —

£3%62(1 + 4e?) sin2w sin% cost +
22984 sindw cost(l + cos?)] sindQ
10
@i = = 7 o0 ait
10
B = — g
£ = cosw(l — 5 cos%) cosQ + sinw(—11 + 15 cos%)
sinw(—11 + 15 cos?) cost sinQ2
= cos3w cos{ — sindw cosi sinf)
o = cosw cos3{2 — sinw cost sin3Q

= cos3w(l + 3 cos?) cos32 — sin3w(3 + cos?) cost X
sin3€2

Substituting the expression for W, in Eqgs. {1], we see that
each component in the right-hand parts of the equations may
be represented as a product of two factors (M) and F(M),
the first of which is dependent only on the coordinate of the
disturbing body and the second only on the coordinate of
the satellite, L.e., dSy/dt = ZF(M,)-F(M).

These equations cannot be integrated in the closed form.
In this paper an integration by parts was used with the rejec-

tion of the small residual term:
1
= D hOD-F(L) —

&© = > [ R0 FODd =
N [ranreord = Y LB ~

N B n; \? = ” _
%S RO (;) 5™ [ran o -
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where
I(M) = SFM)ydM  L(M) =
Fl’(Mi) =

SL(MYaM
d
FITR [F(M)]

I, and I, can be integrated in closed forms. From the se-
quence of the forementioned equations, it is evident that at
each stage of the integration by parts an integral appears in
the form ST, (M)F,‘V(M.)dt, i.e., the same as the original
one but with a small multiplier (n:/n)%

For the moon

nr/n = 2.1-107%(a/c)¥? < 6.7-102
(nr/n)* < 4.4-1073
For the sun
ns/n = 1.6-10~%a/c)®’? £ 5.1-1073

in the region expressed in Eq. [3].

If one discards the integrals with the multipiers (nz/n)?
and (ng/n), then in the expressions for the elements we disre-
gard the components causing disturbances in the elements of
the order of 10~° for close satellites and of the order 107
for satellites having semimajor axes of the order of ¢ = 10c.

In other words, in order correctly to obtain the order of the
disturbances from the sun it is sufficient to integrate once by
parts and to discard the remaining integral. In order to ob-
tain the disturbances from the moon with acceptable ac-
curacy, it is necessary to integrate twice by parts. However,
it is also necessary to retain the most significant components
from the integrals being discarded. These components follow
from the constant and secular terms of the integrals I; and
I,, because the integration of these components yields large
factors 1/n; and (1/n,).

Therefore, let F(M) = C 4+ ® where C is a constant and ®
consists of periodic terms. Then I, = CM + & 4+ C; and

% STMF (M )dt =

— ClFl(M) —I— [M (M) — S FA(M)dM:] +

j S O-F/(Mode

Hence we see that the integrals obtained from the constant
terms in I are of the same order as the components (1/n)I,(M)
X Fi(M;). However, the integrals due to secular terms in I;
are much larger than terms being retained. This is due to the
factor 1/n; associated with these integrals. In the perturba-
tion of the elements, these integrals give components of the
first order relative to the small parameter 9; since

1 1 m; ¢ \3/2
P SRR S
0 n, N \mi—}—m(,az(a)

Consequently, the solution of Eqgs. [1] will have the form
€ = G+ 66D F 626D + 556 4 §52E,@®

Carrying out the integration by the indicated process we
obtain

1 oW d ‘/ﬁmi <£>3/z S 1 a? EX
n 0E N ms + Moy C : 2 o]
f(:’lo(’) — '—12“ eAﬁ”)dM; +

3 5
4 (*) 5 at Yy _ab_ (49 cosjE + B sinjE)
=0

(for € = w, 7, Q):
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1 oW, ms a\3? 0
n ba dt —‘/mi—l-mo <—C‘) azb—a X
"1 ) 1 )
[‘5‘ a? f (Ao(’) bl 5 eAl(’)> dM,] —|—
3D
02 (;—) 5al 2 azz (4;®; cosjfE + B;w stE):|
el OW; ‘/ i e 3 S 1 z_a_
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3
f (AOG) _ 1 eAl‘“) dM; + 8 (ﬂ) %
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—2~a2z (A ey + A m) cos;E +

- 0 -
() — B ing
(B, -+ 5 B; ) sij]

4 —~ o~
Z (A1 cosjE + B sinjE)

The coefficients 4;, B,®, 4;», B;», 4,6, B are ob-
tained from the coefﬁments A ;0 and B; © of the disturbing
functions according to the following formula (for simplifica-
tion of the entry the lower index 7 in all coefficients is omitted).

Ay = —3e(By — 3eBx) + 3(ni/n)e[(1 — $eH A, —
2edy 4 Le244']

Al = —(Bl - %GB:,) +
(/m (L = 3e)Ax" — Jeds' + 3e244']

4 = %(%631 — B, + %633) +
(ni/n)[(3e* — S0 A + (3 +
A3 = %(%‘632 - B3) + (’I’LZ/”L) [51162141’ -
Feeds’ + (5 + 562 45']
Ay = %633 +, (ni/n)(zlg‘ezAz' - %eAs')
A; = Foln/n)e4s’

Al — 592) - 6A2
(ne/m [(~1 + $69B,’ + (3¢ — 2e8)By' — 16*By']

By = %(Az — _€A1 bl §6A3) —
(ni/n)[8eB) — (} +

By = 1(4; — dedy) —
(ni/m) [—54e*By + F5eBs’ — & +

B, = —}edy — (ni/n)[g%geBy’ — £5¢’By’]

B; = gs(ni/n)eBy’

Ay = 3B+ (/m){(—5 + ey’ + Jedy']
A1 = 3B+ (no/m)(feds’ — JA2' + Feds)

F0) Ay’ — i eds’]

%92)32' + —25—4633']

Te¢)By']

Ay, = =3B+ 3Bs + (n/m)[(—%e* + H A/ —

ledy — 145’1
Ay = —3By 4 (ni/n)[—¥edy + 14y — fgeds’]
Ay = —3Bs + (ni/n)[—Pgeds’ + F45']
Ay = —gh(ng/n)edy
By = %eA; — 1A, + (ni/n)[3eBy) — 1 (1 + €2)By’ + LeBy']
By = 34, — $4s + (n/m)[3By’ — %eBy’ — £By']

By = 34, + (ni/n)[—%eB + 1By —
B, = %As + (m/n)[—%geBz’ + %Ba']

1%633']



FEBRUARY 1963

By = —(ni/n)eBs

Ay = LeA, + (ni/n)(%eB, — Le*By)

A, = A+ (n/n)(By — LeBy)

A, = Ay + (ni/n)(—%1eB, — 1B — leBy')
As = Az + (n/n)GBy — LeBy)

Ay = —4(ni/n)eBy

B: = Bi+ (ni/m)[— (1 — ) A1 + $eds’]
B, = B+ (n/n)[}eds — 345 + }eds']
By, = By + (ni/n)[hedy’ — 344']

B, = L(n;/n)eds'

A/ = JA;/0M;

B;' = J3B;/oM;

The integrals S A©dM; are integrable in closed form if -

the variable of the integration is the true anomaly of the dis-
turbing body »;. Then
7
fA(i)fdMi = Cwyiv; + lz——-:l (B coslv; + H 7 sinly;)

—

The coefficients C;, 5;®, H ;) are dependent on the co-
efficients 4 ;», B, and on the parameters of the orbit of the
disturbing body (the semimajor axis and eccentricity). The
calculation of these coefficients is not difficult; because of lack
of spacc they arc not carried out here.

With the help of these integrals it is easy to obtain the ex-
pression for G, and & from Egs. [1]. All coeflicients
are highly simplified because, during the investigation of the
disturbances due to the sun, we take into account in the dis-
turbing function only one component with P, and integrate
by parts only once.

However, the formulas for the elements are quite complex.
Here the principal parts of the perturbations in the elements
are given, which are independent of the eccentricity and
parallax of the disturbing body:

a4 =0

m; a\3? 15 —
(%) p— . _ g — p2
€pr ‘/mi_*_n%&(c) 16e\/l ’eX

[—sin20(l + cos?) (sin2d — sin20@) 4

.. ~ 1 —_—
2 cos2w cost (cos2Q — cos20®)] 4 §5 s2eV1 — et X

(a/c)? sin2w sin2i(M — M©®)

mg a\** 3 sing
) = B P —
o \/m,.+m06’<c> 16\/1—62><

[—5e? sin2w cost (sin28 — sin23) +
(2 + 3e% + 5e? cos2w) (cos28 — cos2(®)] —
5,, ¢
1867 V1 —¢

m; a 3/2 3 1
(i) = | — S
e Jmiﬁ-moal(C) 16\/1—-62x

{1 — 5 (3 + 5 cos 2w) +
5(1 — cos2w) cos?](sin28 — sin20®) 4
5(—2 4 e2) sin2w cosi(cos2( — cos28®)} +
5,2 <l>3 3_ 1 [ — e (—1 4 5 cos2w) 4
8 vV

¢ 1— p2

3
( %) sin2wsin2i(M — M)

5(1 — cos2w) cos%](M — M®)
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ms a\3?* 3 1
(D = 5‘. —_ e —_—
e Jmi"l‘mo (C) 16'\/1_e2><

[—(2 + 3¢z — 5e cos 2w) X cost (sin2 — sin2(w) +

Be? sin2w(cos28 — cos2()] +

5.2 (2)3 3 (—2 — 3¢ + 5e? cos2w)
*\e¢/ 8 V1 — e?

me a \3/2
M, ®» = hd A —
i ‘/m; + me 8 < c) X

{%5 (1 + ¢ sin2w cosi(cos2f — cos2(®) +

cost(M — M®)

1_36 [(7 + 3eD)sin% + 5(1 4+ e?)cos2w(l + cos)](sin28 —
sin2S~2<°>)} Y (%)3 {% . +% (7 + 3¢ X
(—1 4+ 3 cos¥) -l—,ng§ (1 4 e?)cos2w sin%'} M — Mo)

Q=0-— M, 0o = Q — Mo

C, is the constant of integration in the element a:

4

a = a [1 + 8:2(a/c)® Y. (Co+ A;cosjE + B; sinjE)i|
i=0

Using C, it is possible to make the secular part in M equal to

zero. M;© and M@ are the initial values of the mean anom-

alies of the disturbing body and the satellite. ‘

In the expressions for @p(® the terms with &; give long
periodic variations of the elements of the satellite orbit during
a period of revolution of the disturbing body.

Let us examine the maximum variation of the elements
caused by these disturbances, i.e., the difference between their
maximum and minimum amplitudes. We shall designate this
difference by A G®:

A0 = 5.10%(a/c)?/?
for
e=(1/V2) i=0

For a = 9¢, i.e., for a = 58,000 km, we have 4,& = 1.4-1073;
the oscillations of the height of the perigee amount to ap-
proximately 80 km. For the other elements we have

4.0 =10'8
for i=0 w=7/2 e=10 a =9
A = 2!
for 1=m/2 a = 9¢ e=0
Ao = 2
for t=20 a =9 e=20

The maximum variations of the elements caused by the
secular lunar perturbations over one lunar period are

[e(L)]max = 24-5‘10—3
e = 1/\/-2_

This reduces the perigee by 240 km over the period of revolu-
tion of the moon:

for w = 7/4 1= m/2 a = 9

[i(L)]max =9

for 1= 7/2 w=7/4 e=1/vV2 a=9
[w(L)]max = 32/
for e=% i=0 a=9

[Q@ oz = 16/
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(S5

for e? = a = 9¢ 1=0

The perturbations of the elements @, w@ Q@ increase
strongly when ¢ — 1. More detailed formulas will be pub-
lished in the future.

—Recewed January 24, 1961
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Reviewer’s Comment

The article treats the motion of an artificial satellite around
the spherical earth under the influence of the moon and the
sun. Since the coupling effects among the oblateness of the
earth and the attraction of the moon and of the sun are
neglected, the problem is similar to the lunar theory.

However, in contrast with the lunar theory, expansion of
the disturbing function in powers of the eccentricity of the
satellite is inefficient or impossible due to a possible large
value of the eccentricity. The article avoids this difficulty
by carrying out integration with a method of “integration by
parts,”” the eccentric anomaly of the satellite being the
variable of integration, and the true anomaly of the moon or
the sun, the variable of differentiation. This may be the
point of the present article.

The lunar or solar perturbations on the satellite motion are
evaluated with the orbital plane of the moon or the ecliptic as

the reference plane, respectively, so that @, 7, and w should be
distinguished in the two cases, and, moreover, when both the
lunar and solar perturbations are combined, transformations
to a common reference plane are necessary.

Since the main source of perturbations is the oblateness of
the earth, the reference plane should be the equatorial plane
of the earth even if perturbations due to the oblateness and
the attractions of the moon and of the sun are evaluated
separately. This may constitute a weakness of the theory.

The article takes into account the influence of the moon
through the fourth harmonic of the disturbing funetion. To
preserve the order of the accuracy of the theory, the main per-
turbation of the moon’s coordinates due to the solar attrac-
tion should be considered.

—GeN-1¢HIRO HoORI
Department of Astronomy
University of Tokyo
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Dosimetric Measurements on the Second

Soviet Spaceship Satellite

I. A. Savenko, N. F. PisarexNko, and P. I. SHAVRIN

1 Introduction

N order to insure the safety of astronauts, a detailed

knowledge of the physical properties of cosmic space is

indispensable. Study of cosmic radiation, including the follow-
ing forms of radiation, is of particular importance:

1) Charged particle flux (protons with energies £, >
108 ev, in particular), penetrating into the solar system from
the galaxy, which is isotropic in space and nearly uniform in
time. This form of radiation which, in its narrow sense, con-
stitutes cosmic rays, has been known for a long time and has
been comparatively well studied. The cosmic ray intensity
in interplanetary space during the years of maximum solar
activity constitutes 2 to 2.5 particles-em~2-sec™ (1).! As
the solar activity decreases, the intensity of cosmic rays is
doubled (2).

2) Charged particles (protons with energies of about
10¢ ev) and vy quanta, whose appearance is linked with
chromospheric flares on the sun. Most of these flares are ob-
served during the maximum period of the 11-year cycle of
solar activity. During the last years, several flares were ob-
served after which an increase in the proton flux of 103 and
higher took place in the near-earth space (3).

Translated from Iskusstvennye Sputniks Zemli (Artificial Earth
Satellites) (1961), no. 9, pp. 71-77. Translated by Andre L.
Brichant for NASA Technical Information Agency.

1 Numbers in parentheses indicate References at end of paper.

3) Radiation originating from the earth’s radiation belts.
At present the existence of two such fundamental radiation
belts has been established (4).2 The outer belt is at a distance
of 13,000 to 50,000 km from the earth in the equatorial plane.
It consists basically of electrons with mean energy of the order
of 105 ev. According to measurements on cosmic rockets, the
maximum radiation intensity in the outer belt corresponds
to the power of a dose to 10 r/hr (under an average substance
layer exceeding 1 g-cm™? thickness) (5). The processes
linked with chromospheric flares in the sun have a substantial
influence on the intensity and position of the outer radiation
belt (5). The inner radiation belt is situated at distances from
600 to 4500 km from the surface of the earth (in the magnetic
equator plane), and it contains, besides electrons, protons
with energies of the order of 108 ev. The radiation intensity
in this belt is also high; it reaches 10 r/hr for the dose power
under 1 g-em~2 substance layer (5, 6).3

The existence of the forementioned types of radiation,
which may present a serious danger for biological objects
under specific conditions, requires the carrying out of dosi-
metric control aboard spacecraft. This requirement becomes
particularly obvious if one considers possible rapid variations
In intensity of either form of cosmic radiation caused by solar
processes. ,

The second Soviet spaceship satellite was launched on
August 19, 1960. Its orbit plane was inclined at an angle of

2,3 See Editor’s Note.



